description
Описание вакансии
#вакансия #fulltime #remote #senior #dataengineer #llm #rag
Компания Centicore💙 находится в поисках Senior Data Engineer (LLM / RAG).
Мы занимаемся продуктовой и платформенной разработкой под ключ для крупных заказчиков. В рамках проекта команда строит промышленную data-платформу для работы с большими языковыми моделями (LLM) и Retrieval-Augmented Generation (RAG).
Формат работы: Удаленка по РФ
Вилка: 350–380k на руки (в зависимости от опыта и пожеланий кандидата)
Уровень: Senior
🔷 Требования:
Отличное знание Python: структуры данных, итераторы, декораторы,
асинхронное и параллельное программирование, OOP и FP
Уверенное владение SQL: сложные запросы, CTE, оконные функции
Опыт работы с vector DB: OpenSearch, Qdrant
Опыт построения batch и streaming-сервисов для расчёта embeddings и загрузки их в векторные хранилища
Понимание принципов RAG и обогащения LLM контекстными данными
Опыт разработки промышленных ETL-сервисов на Python
Опыт оркестрации пайплайнов: Apache Airflow, Argo Workflows
Хорошее знание Apache Spark / PySpark (производительность, отладка, Spark History Server)
Опыт асинхронного взаимодействия с веб-сервисами по REST API (aiohttp, httpx)
Опыт работы с PostgreSQL, Oracle
Опыт работы с Big Data-хранилищами: Hadoop/HDFS, S3, Hive, Iceberg
Опыт работы в JupyterLab / JupyterHub
🔷 Будет плюсом:
Опыт потоковой обработки данных
Опыт работы в AI / ML / LLM-проектах
Понимание требований к данным для обучения и эксплуатации ML-моделей
Опыт построения отказоустойчивых data-сервисов в enterprise-среде
🔷 Обязанности:
Разработка сервисов пакетной и потоковой обработки данных для вычисления векторных представлений (embeddings)
Загрузка и сопровождение данных в векторных хранилищах для использования в RAG-сценариях
Разработка и поддержка ETL-пайплайнов под управлением Airflow / Argo
Оптимизация SQL-запросов и Spark-приложений
Взаимодействие с командами Data Science, ML/LLM и инфраструктуры
Участие в развитии data-платформы для LLM-решений
💌 Для откликов и вопросов — писать в лс
Будем рады знакомству! ❤️
Компания Centicore💙 находится в поисках Senior Data Engineer (LLM / RAG).
Мы занимаемся продуктовой и платформенной разработкой под ключ для крупных заказчиков. В рамках проекта команда строит промышленную data-платформу для работы с большими языковыми моделями (LLM) и Retrieval-Augmented Generation (RAG).
Формат работы: Удаленка по РФ
Вилка: 350–380k на руки (в зависимости от опыта и пожеланий кандидата)
Уровень: Senior
🔷 Требования:
Отличное знание Python: структуры данных, итераторы, декораторы,
асинхронное и параллельное программирование, OOP и FP
Уверенное владение SQL: сложные запросы, CTE, оконные функции
Опыт работы с vector DB: OpenSearch, Qdrant
Опыт построения batch и streaming-сервисов для расчёта embeddings и загрузки их в векторные хранилища
Понимание принципов RAG и обогащения LLM контекстными данными
Опыт разработки промышленных ETL-сервисов на Python
Опыт оркестрации пайплайнов: Apache Airflow, Argo Workflows
Хорошее знание Apache Spark / PySpark (производительность, отладка, Spark History Server)
Опыт асинхронного взаимодействия с веб-сервисами по REST API (aiohttp, httpx)
Опыт работы с PostgreSQL, Oracle
Опыт работы с Big Data-хранилищами: Hadoop/HDFS, S3, Hive, Iceberg
Опыт работы в JupyterLab / JupyterHub
🔷 Будет плюсом:
Опыт потоковой обработки данных
Опыт работы в AI / ML / LLM-проектах
Понимание требований к данным для обучения и эксплуатации ML-моделей
Опыт построения отказоустойчивых data-сервисов в enterprise-среде
🔷 Обязанности:
Разработка сервисов пакетной и потоковой обработки данных для вычисления векторных представлений (embeddings)
Загрузка и сопровождение данных в векторных хранилищах для использования в RAG-сценариях
Разработка и поддержка ETL-пайплайнов под управлением Airflow / Argo
Оптимизация SQL-запросов и Spark-приложений
Взаимодействие с командами Data Science, ML/LLM и инфраструктуры
Участие в развитии data-платформы для LLM-решений
💌 Для откликов и вопросов — писать в лс
Будем рады знакомству! ❤️
tips_and_updates
Как откликнуться эффективно
- arrow_right1–2 релевантных кейса (ссылки/скриншоты)
- arrow_rightСроки и формат работы (когда на связи)
- arrow_right2–3 уточняющих вопроса по задаче
handshake
Рекомендации работодателю
- arrow_rightОпишите результат и критерии приёмки
- arrow_rightУкажите бюджет/вилку — это повышает качество откликов
- arrow_rightСразу обозначьте сроки и доступность по коммуникациям
lists
Ещё вакансии
Job Vacancy
Dragon Oil
Не указан
Офис
Полная занятость
Senior Qa Engineer (Mobile App)
inDrive
Не указан
Гибрид
Полная занятость
Support Engineer II
QuickNode
Не указан
Удалённо
Полная занятость
Python-разработчик
Фордевинд
от 300 000 ₽
Удалённо
Полная занятость
Разработчик PHP
VVP Group
Не указан
Удалённо
Полная занятость
Junior Archviz Artist
Graffinteractive
Не указан
Офис
Полная занятость