Перейти к содержимому
search
work Вакансия на FreelanceSpace опубликовано 01.11.2025

ML

apartmentАВ Софт scheduleПолная занятость publicОфис
send Откликнуться

Публичная страница вакансии: прозрачные условия, быстрый отклик, понятный следующий шаг. Для работодателя — качественный воронко-трафик, для исполнителя — ясные требования без “воды”.

description

Описание вакансии

#вакансия #офис #Москва #ML #fulltime

📌Вакансия: ML
💼Компания: АВ Софт
📍Локация: Москва
Формат: офис
Занятость: полная
💰Зарплата: 150 000 – 250 000 рублей (NET)

Наша компания – отечественный вендор в области информационной безопасности. Мы разрабатываем продукты для обеспечения безопасности от различных угроз. 👨‍💻

ОБЯЗАННОСТИ
• Участвовать в полном цикле разработки — от понимания бизнес-задачи и подготовки данных до обучения, тестирования, деплоя
• Сбор, очистка, нормализация данных, построение признаков (feature engineering) и разработка ETL-пайплайнов для задач классификации и детектирования аномалий.
• Разработка и обучение ML-моделей (включая классические алгоритмы и deep learning) для решения задач классификации, детектирования аномалий и предсказания.
• Упаковка моделей в контейнеры (Docker), их деплой в виде REST-сервисов, оптимизация скорости инференса.
• Обеспечение стабильной работы моделей, мониторинг качества, выявление data drift и concept drift, планирование и проведение переобучения моделей.

ТРЕБОВАНИЯ
• Опыт разработки и деплоя ML-моделей в продакшн.
• Уверенное знание Python и основных библиотек: numpy, pandas, scikit-learn, PyTorch, CatBoost, XGBoost, LightGBM, transformers.
• Опыт работы с классическими ML-моделями (XGBoost, LightGBM, Random Forest) и SOTA-подходами (включая NLP/CV).
• Навыки работы с SQL и системами контроля версий (Git).
• Практический опыт работы с Docker и развертыванием сервисов (REST API).
• Опыт оркестрации пайплайнов (Airflow или аналоги).
• Знание Linux как рабочей среды.
• Понимание принципов MLOps, управления экспериментами и версионирования данных/моделей. Умение писать читаемый, тестируемый и эффективный код.
• Английский язык на уровне чтения технической документации.

БУДЕТ ПЛЮСОМ
• Опыт оптимизации и оптимизации DL-моделей с помощью ONNX, TensorRT
• Проактивная жизненная позиция
• Знание методов интерпретации моделей (SHAP, LIME) и уязвимостей ML-моделей.
• Опыт интеграции ML-моделей в реальные сервисы и взаимодействия с командами разработки.
• Желание расти, предлагать новые решения и улучшать продукты.

УСЛОВИЯ РАБОТЫ
- оформление по ТК в аккредитованной ИТ компании
- график работы 5/2 с началом рабочего дня с 9:00 или 10:00
- возможен гибкий график работы для студентов
(минимум 20 часов в офисе)
- ведение задач в единой системе, актуализация вики и гайдов
- обучение по продуктам компании и корпоративная библиотека
- возможность приобретения обучающих курсов за счет компании
- проекты в области информационной безопасности и коммуникации

📲Откликнуться:
tips_and_updates
Как откликнуться эффективно
  • arrow_right1–2 релевантных кейса (ссылки/скриншоты)
  • arrow_rightСроки и формат работы (когда на связи)
  • arrow_right2–3 уточняющих вопроса по задаче
handshake
Рекомендации работодателю
  • arrow_rightОпишите результат и критерии приёмки
  • arrow_rightУкажите бюджет/вилку — это повышает качество откликов
  • arrow_rightСразу обозначьте сроки и доступность по коммуникациям