description
Описание вакансии
Руководитель центра ML инжиниринга в Газпромнефть-Региональные продажи.
Ключевая задача:
- Техническое лидерство и управление жизненным циклом решений, решение ключевых бизнес-задач, стратегическое взаимодействие
- Основные обязанности:
- Руководить командой MLE-инженеров на всех этапах реализации проектов: от формулировки гипотез и исследований (PoC) до разработки, промышленного внедрения (production deployment), мониторинга и поддержки ML-решений.
- Обеспечивать высокое качество архитектуры, кода и моделируемых решений (MLOps практики).
- Применять методы машинного обучения для решения широкого спектра задач: от временных рядов и анализа текстов (NLP, LLM) до оптимизации бизнес-процессов (например, складская логистика).
- Проектировать и внедрять высоконагруженные микросервисные архитектуры для ML систем.
- Тесно взаимодействовать с бизнес-заказчиками для глубокого понимания задач, формирования требований и управления ожиданиями.
- Эффективно координировать работу со смежными командами (BI, DWH/Data Lake, Data Quality, DevOps) для обеспечения сквозной реализации проектов и качества данных.
- Развитие Команды & Экспертизы:Наставлять членов команды (менторинг), повышая их техническую экспертизу в ML-инжиниринге и качество инженерных решений.
- Активно участвовать в генерации новых идей, выявлять возможности для роста бизнеса через применение машинного обучения и предлагать технологические решения.
Какого кандидата мы ищем:
- Высшее образование в области Computer Science, Прикладной Математики или смежных технических дисциплинах
- Солидный опыт разработки и внедрения промышленных систем с применением алгоритмов машинного обучения, успешный опыт вывода ML-проектов в продакшн
- Практическое знание и применение принципов MLOps: тестирование моделей/сервисов, логирование, мониторинг, версионирование данных и кода (MLFlow/DVC/ClearML)
- Опыт работы с платформами контейнеризации (Docker/Kubernetes) и CI/CD пайплайнами, знание Git workflow
- Продвинутое знание Python для ML/DS задач, знание классических методов ML, фреймворков и библиотек
- Практическое применение LLM и архитектур типа RAG
- Понимание и опыт применения методов оптимизации (знание GAMS/CPLEX или аналогичных инструментов - сильное преимущество)
- Опыт работы с системами очередей (AMQP/RabbitMQ), кэширования (Redis) и распределенными вычислениями
- Уверенная работа с SQL, опыт с BigData технологиями (Hadoop/Hive или аналоги)
- Опыт работы в доменных областях: ритейл / e-commerce, логистика, производство, управление технологическими процессами
Условия работы
- Место работы: г. Санкт-Петербург, Виленский пер
- График работы: 5/2, 09:00 - 18:00, пт. до 16:45.
- Гибридный формат работы - офис 5 р/мес
- Трудоустройство по ТК РФ
Размер оклада обсуждается с успешным кандидатом
Годовое премирование по итогам общих достижений и индивидуального результата
Социальный пакет
Отклики ждем
tips_and_updates
Как откликнуться эффективно
- arrow_right1–2 релевантных кейса (ссылки/скриншоты)
- arrow_rightСроки и формат работы (когда на связи)
- arrow_right2–3 уточняющих вопроса по задаче
handshake
Рекомендации работодателю
- arrow_rightОпишите результат и критерии приёмки
- arrow_rightУкажите бюджет/вилку — это повышает качество откликов
- arrow_rightСразу обозначьте сроки и доступность по коммуникациям
lists
Ещё вакансии
Frontend Developer (React)
Gaba HR
1 000 ₽ — 2 500 ₽
Удалённо
Полная занятость
Data Engineer
AI HealthTech
300 000 ₽ — 350 000 ₽
Гибрид
Полная занятость
Техлид 1С
mokka
350 000 ₽ — 550 000 ₽
Гибрид
Полная занятость
Middle Web Designer
Квайти
Не указан
Удалённо
Полная занятость
Java Разработчик
Ozon
Не указан
Удалённо
Полная занятость
Middle Специалист по ИБ
Korona
150 000 ₽ — 200 000 ₽
Гибрид
Полная занятость